Lecture 4 Multiplication and division

Computing platforms

Novosibirsk State University University of Hertfordshire

D. Irtegov, A.Shafarenko

2018

Multiplication by adding

• A*B

P=0

While B>0 do

P+=A

B---

Wend

- For 8-bit values, 256 additions in worst case
- For 64-bit values on modern CPU, won't finish in your lifetime

Let's consider special cases

- A*2 = A+A = lshift(A,1)
- A*2^N = while N-->0 do P+=A wend = lshift(A,N)
- A*(2^N+2^M)=A*2^N+A*2^M
- If we represent arbitrary number as sum of 2^{N} ...

Algorithm of multiplication

- Any number has the binary representation
- B=Sum(b[N]*2^N), where b[N] Nth bit of binary representation
- P=A*B=Sum(A*b[N]*2^N)
- So, the algorithm

N=0

P=0

```
While N<bits(B) do
```

```
P += A * b[N]
```

```
A=lshift(A,1)
```

Wend

Let's try to visualize it

Note that 4-bit*4bit yields 8-bit result

 $1 \ 1 \ 0 \ 1$ $1 \ 1 \ 1 \ 0$ Х 0 0 0 0 0 0 0 0 0 $0\ 0\ 0\ 1\ 1\ 0\ 1\ 0$ $0\ 0\ 1\ 1\ 0\ 1\ 0\ 0$ 0 1 1 0 1 0 0 0 $1\ 0\ 1\ 1\ 0\ 1\ 1\ 0$

Looks familiar?

 $1\ 1\ 0\ 1$ $1\ 1\ 1\ 0$ Х $0 \ 0 \ 0 \ 0$ $1\ 1\ 0\ 1$ $1\ 1\ 0\ 1$ $1\ 1\ 0\ 1$ $1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0$

How to implement this in CdM-8?

- b[N] can be calculated as series of right shifts
- Shr instruction shifts the register and moves lowest bit to C
- We do not need to count to 8
- The loop can stop when reg==0 (Z flag is set)
- But how to calculate 16-bit P and 16-bit A*2^N?
- They need 2 registers each, and we have only four registers.

Let's go in other direction

N=7 P=0 While True do P+=A*b[N] if N==0 break P=rshift(P,1) N--

Wend

- Now we need a register to store N
- Or we can unroll the loop (there are only 8 iterations after all)

Demonstration in CocolDE

- <u>http://ccfit.nsu.ru/~fat/Platforms/mult.asm</u>
- 8-bit unsigned multiplication with 16-bit results using only registers (no memory access)

What about signed multiplication?

1	$1 \ 0 \ 1$
× 1	$1 \ 1 \ 0$
0	$0 \ 0 \ 0$
11	$0 \ 1$
$1 \ 1 \ 0$	1
$1\ 1\ 0\ 1$	
10110	$1 \ 1 \ 0$

- If we treat 1101 and 1110 as
 - two-complement signed numbers,
 - the result is wrong.
 - You do not even need to convert to decimal.
 - The operands are both negative, but the result is positive!

Proper way of two-complement signed multiplication

Sign-extend both numbers *before* the multiplication

Actually, this is a disadvantage of two-complement presentation

With sign-magnitude, you just multiply unsigned and xor sign bits

11111101 $\times 11111110$ 0 0 0 0 0 0 0 0 01111101011110100 $1\ 1\ 1\ 0\ 1\ 0\ 0\ 0$ 11010000 $1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$ $0\ 1\ 0\ 0\ 0\ 0\ 0$ $1\ 0\ 0\ 0\ 0\ 0\ 0$ $0\ 0\ 0\ 0\ 0\ 1\ 1\ 0$

Division

- the dividend is the number to be divided
- the divisor is the number the dividend is divided by
- the quotient is the main result of division,
- a remainder, which is the quantity left over, i.e. the difference between the dividend and product of the quotient and the divisor.

Exact definition of quotient

- a quotient, which is the whole number of times the divisor 'goes into' the dividend.
- In other words, the quotient is the maximum integer that if multiplied by the divisor gives the result not exceeding the dividend.

Let's try to divide 11(dec) to 3(dec)

- 11÷3=3 rem 2
- 11(dec)=1011
- 3=0011

STAGE 1:	1	STAGE 2:	1	STAGE 3:	11
	$11\overline{\)} 1011$		$11\overline{\)} 1011$		$11\overline{) 1011}$
	- 11		- 11		- 11
	-10		$\overline{101}$		101
					- 11

 $1 \ 0$